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INTRODUCTION

Abstract

Objective: This study aimed to evaluate a multimodal Al system integrating
dental Xrays and patient data with uncertainty quantification (UQ) to improve
diagnostic reliability in dental clinics. Methods: A total of 400 patient cases from
January to December 2024 were analyzed, combining panoramic radiographs
with clinical data (age, gender, symptoms). Diagnoses for caries and periapical
lesions were generated using a CNN for image analysis and a feed-forward neural
network for clinical data. Monte Carlo dropout was used to provide 50 stochastic
predictions per case, enabling UQ via entropy measurements. Diagnostic metrics
(sensitivity, specificity, accuracy, AUC) were compared with evaluations by
general dentists. Results: Al achieved 85% accuracy (95% CI: 74-93%) for
dental caries (sensitivity 91%, specificity 78.3%) and 73.3% for periapical
lesions (sensitivity 96%, specificity 65%). AUCs were 0.92 and 0.85,
respectively. Dentists showed lower accuracy (78.3% for caries, 60% for lesions).
Excluding the 10% most uncertain cases improved Al caries accuracy to 92%,
with 89% of errors concentrated in high-uncertainty cases. Conclusion: The Al
system improved diagnostic performance and reliability through UQ, offering high
sensitivity and helpful alerts for ambiguous cases. While promising for routine
screening, further walidation on diverse datasets is mneeded before clinical
deployment.

Dental diagnostics experiences quick advancements
because of artificial intelligence (AI) advancements
[1,2]. Dental radiograph diagnostic features extracted
through CNNs demonstrate performance levels
equaling or surpassing those of experienced
clinicians [1,3]. Research has proven that Al systems
successfully diagnose dental caries together with
staging periodontal disease and identifying oral
conditions like periapical lesions [3-5]. According to
recent studies several diagnosis systems measured
caries detection between 73% and 98% while
periodontitis classification reached sensitivities of

88% and specificities of around 82% [3,4]. The
implementation of Al technologies in regular dental
practice remains restricted despite the promising
discoveries.

The main difficulty with dental Al systems stems
from their diagnosis method, which depends
exclusively on radiographic images and makes them
less effective when used in various clinical settings or
patient communities [1, 6]. Al systems today deliver
final diagnoses without providing confidence
indicators, which makes it difficult for users to
determine Al reliability levels [7]. When performing
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diagnoses in clinical settings, dentists use X-ray
imaging combined with collected patient reports of
tooth pain to make their evaluations. Al diagnostic
decisions without uncertainty measures, they
generate barriers for clinician acceptance as well as
lessen their trust in the system [7, 8]. To achieve
trustworthy healthcare Al systems, clinicians must
recognize both high prediction accuracy and clear
prediction confidence information, which enables
them to adopt Al safely when making decisions [7,
8].

This study fills the current clinical needs by
developing a novel multimodal Al system that
combines panoramic imaging with patientreported
tooth pain data and then applies Monte Carlo
dropout to determine prediction uncertainty. The
system emulates how doctors think while making
diagnoses through enhancing predictive outputs with
a  “confidence score” at every stage. The
implementation of uncertainty quantification in Al
diagnostic systems for general dental practice serves
as a novel first in this research. The system aims to
increase diagnostic precision for dental caries and
periapical lesions to determine unclear cases that
should vyield human examination, which might
benefit treatment efficacy and patient clinic
processes.

Novelty and Key Contributions

The study introduces multiple new improvements to
dental Al diagnostic research:

First Application of Uncertainty Quantification in
Dental Al:

As per our knowledge, this research marks the initial
investigation of applying Monte Carlo dropout for
uncertainty estimation within an Al-based diagnostic
system operating inside general dental practices. The
technical method empowers the predictive model to
detect yet identify predictions with weak confidence
levels so clinicians can review these cases [7,8].

Multimodal Data Fusion:

Our system introduces patientreported tooth pain
data with radiographic images into the diagnostic
process, while previous methods counted on
radiographic images alone. The method duplicates
what dentists do during diagnosis by evaluating
complete medical situations and should enhance

predictive accuracy through relevant case context [1,

3, 8].

Enhanced Clinical Relevance and Decision
Support:

Clinical staff gain the capabilities to examine
uncertain cases through the model's diagnostic
predictions with uncertainty measurements. Having
such estimation methods within the model system
reduces missed diagnoses and unnecessary treatment
procedures while leading to quicker patient care
outcomes [7, 8]. The system enables fast processing at
2-3 seconds per case when using GPU-based
processing, which opens opportunities for improving
clinic workflow efficiency.

Comparison with Existing Dental Al Systems:

The analysis in our study entails performing a
thorough evaluation between the proposed model
and currently available dental Al systems. Our system
distinguishes itself from standard commercial tools
because it combines visual data from radiographs
together with uncertainty measurements alongside
clinical information for precise diagnosis staffing and
patient care.

The developed work brings novel progress to Al tools
usable in clinical dental applications.

Materials and Methods

Study Design and Data Collection

The research analysis spanned twelve months,
starting from January through December 2024 and
took place in a university dental clinic. A total
sampling of 400 patient cases was selected from an
initial 500 cases through the application of these
screening criteria.

Inclusion Criteria:

The study examined adult patients aged 18 years or
older who received definite diagnostic results about
dental caries and periapical pathology while having
panoramic radiographic examinations.

Exclusion Criteria:
The study ruled out cases when panoramic
radiographs presented motion artifacts or low

https://frontiersengineering.com

| Javed, 2025 | Page 2



* Frontiers in
0>

Volume 2, Issue 2, 2025

contrast along with obstructed visibility from
implants or hardware or when clinical records were
partial or unreadable.

Every case consisted of a high-quality panoramic
radiograph  together with important clinical
information obtained from electronic health records
that included patient age gender and a pain-outcome
measure. Two experienced dentists established
ground truth diagnoses for dental caries and
periapical lesions through independent radiograph
and clinical record evaluations before reaching
consensus to address any remaining differences [2,

4].

Al Model Architecture

Our Al model employs a multimodal architecture
with two branches:

Image Branch:

Panoramic radiographs get analyzed through a CNN
model built from ResNet principles. The system used
image data training from the ImageNet database
followed by fine-tuning on our dental X-ray dataset
to generate 256-dimensional feature vectors from its
penultimate processing layer [3, 8].

Clinical Data Branch:

The feed-forward neural network receives clinical
information from patient age as well as a pain
indicator value. The feature vector consists of 8
dimensions after processing from the 2-input nodes
and 8-hidden nodes layer [2, 8].

The dental caries and periapical lesion classification
layer contains a fully connected component that
receives a joint 264-dimensional representation made
by vector concatenation and generates probabilities
for dual binary outcomes [2, 8]. The programmers
implemented this fusion method at a late stage with
the objective of extracting maximum value from
multiple information sources.

Model Training and Validation

The patient-based division of the dataset (n=400)
allocated 70% of cases (n=280) for training purposes,
while validation received 15% (n=60) of cases and
the remaining 15% (n=60) functioned as the test
group. The data collection method included
stratification to achieve equal distribution of dental
caries and periapical lesions in different data groups.

The radiograph preprocessing included converting to
grayscale, then resizing images to 512 by 512 pixels
and performing contrast normalization. The training
images received data augmentation through random
rotations (£10°) with horizontal flipping along with
brightness modifications to enhance robustness
according to [2, 8]. The researchers normalized age
while converting pain records into two distinct
categories (O or 1).

Each diagnostic output utilized binary cross-entropy
loss during training under the Adam optimizer with
a learning rate set to 1x10”4. The model included
early stopping that monitored validation loss to
avoid overfitting the data. The validation set allowed
for Youden’s ] index optimization of individual
output decisions, which became fixed for test set
performance evaluation [4].

Uncertainty Quantification

Uncertainty quantification (UQ) implementation
involved the use of Monte Carlo dropout in the
inference process. Testing included activation of
dropout layers set at a 0.3 dropout rate and 50
stochastic forward passes for each case to produce
probability predictions that evaluated dental caries
and periapical lesion status [8, 10]. The computed
prediction result consisted of averaging 50 derived
values. Prediction uncertainty values from the model
emerged from calculations related to predictive
entropy  together  with  standard  deviation
measurements of probability estimates. Predictive
entropy measurements above the top 25th percentile
indicated high uncertainty conditions, which
triggered human operator examinations. The
method identified situations where model
confidence reached low levels, thus signaling
instances that require manual medical confirmation
according to [8, 10].

Clinician Performance Assessment

The test set containing 60 cases underwent
evaluation by a 5-year experienced general dentist
who worked independently. The dentist evaluated
panoramic radiographs together with clinical data
points (patient age, sex, and tooth  Hai did not
disclose the Al system's prediction results to the
dentist. The dental diagnoses for dental caries and
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periapical lesions from the dentist underwent
comparison with expert consensus reference
standards to evaluate sensitivity alongside specificity
and PPV and NPV and accuracy rates. The
assessment process duration between the computer
model and human dentist was compared (the Al
needed 2-3 seconds for each case on a GPU but the
dentist spent 60-90 seconds per case) according to
data presented in [11].

Outcome Measures and Statistical Analysis

The detection of dental caries and periapical lesions
used primary outcome measures that included
sensitivity, specificity, PPV, NPV, accuracy and
AUC. Research results originated from confusion
matrix specificity comparisons that linked model
predictions with standard reference outcomes.
Secondary analysis assessed diagnostic performance
changes because cases with the top 10% uncertainty
were sent to the dentist instead of following
automatic processing routines. The Brier scores and
reliability diagrams were used to evaluate the model
calibration after Platt scaling was applied to the
validation set [10, 12]. The statistical analysis utilized
Python (SciPy) together with R (pROC package). The
Wilson method generated confidence intervals for
analysis while paired ttests, together with

McNemar’s test (@ = 0.05), conducted the
comparison between the Al and the clinician.

Results

The study researched 400 patient cases, which
presented a median age of 36.4 years with an SD of
12.5 and a range between 18 and 82 years. These
subjects included 52% female participants. Dental
caries existed in 220 (55%) cases, while periapical
lesions were observed in 125 (31%) patients.
Hocevar analyzed 100 cases representing 25% of the
total cohort, which demonstrated both dental caries
and periapical pathology, as well as 160 cases among
40% of the population revealing no signs of
significant dental issues. The research revealed that
tooth pain affected 30% of the participants. Among
total cases, periapical lesions were evident in 83% of
those experiencing tooth pain versus only 10%
without such reports (x2, p < 0.001) [2, 7].

(Figure 1. Distribution of diagnostic categories in the
study cohort. According to the pie chart, dental
caries existed alone or alongside periapical lesions in
55% of patients; only 5% had periapical lesions by
themselves and the rest, 40%, had normal results.
Realistic dental conditions found across general
practices make up the clinical patient population

included in this analysis.

Distribution of Diagnostic Categories in the Study Cohort

55.0%
Dental Caries + Periapical Lesions

Al Model Performance
The Al system received the following test outcomes
on a sample of sixty held-out cases in the test set:

Dental Caries:
Sensitivity: 91.0% (95% CI: 76-98%)
Specificity: 78.3% (95% CI: 61-90%)

Normal

40.0%

Periapical Lesions Only

Accuracy: 85.0% (95% CI: 74-93%)
Positive Predictive Value (PPV): 69.2%
Negative Predictive Value (NPV): 90.0%
AUC: 0.92

Periapical Lesions:

Sensitivity: 96.0% (95% CI: 80-100%)
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Specificity: 65.0% (95% CI: 47-80%)
Accuracy: 73.3% (95% CI: 60-84%)
PPV: 48.0%

NPV: 97.5%

AUC: 0.85

The evaluation results showed both tasks had
excellent performance in sensitivity along with AUC
but the specificity reached only moderate levels
because the model marked many healthy cases as
positive. The diagnosis model incorrectly identified
many periapical lesions as positive cases through

misinterpretation of healing extraction sites and
other normal anatomical variations that resemble
lesions on panoramic images [8]. The predictive
entropy measurement showed solid consistency by
detecting high accuracy in 89% of cases wrongly
identified through the model. The accuracy of caries
detection increased from 85.0% to 92% through
clinician review of the 10% most uncertain cases,
which were hypothetically excluded from the
automated workflow according to data presented in

(2, 10].

Table 1. Diagnostic Performance of the AI Model versus Human Clinician (n = 60 cases).

(Values in parentheses represent the 95% confidence intervals.)

Task Method Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) AUC

Dental Caries Al Model ~ 91.0(76-98) 78.3 (61-90) 69.2 90.0 85.0 (74-93) 092
Clinician 85.0 (69-95) 71.7 (54-85) 75.5 81.3 78.3 (66-88) -

Periapical Lesion Al Model ~ 96.0 (80-100) 65.0 (47-80) 48.0 91.5 73.3 (60-84) 0.85
Clinician 90.0 (70-99) 50.0 (33-67) 37.5 93.8 60.0 (46-72) -

Uncertainty Quantification Results

Through Monte Carlo dropout, the model produced
50 predictions per case, yielding a mean probability
and a computed predictive entropy that quantified
uncertainty. We observed that cases with higher
entropy (i.e., the top 25% of uncertainty scores) were
associated with most diagnostic errors. For example,
when the 10% of cases with the highest uncertainty
were excluded from the automated diagnosis, the
accuracy for caries detection improved from 85.0%
to 92% [10]. The high correspondence

(approximately 89%) between misclassified cases and

high uncertainty flags suggests that UQ serves as an
effective mechanism to identify cases warranting
additional human review [10]. Calibration of the
model’s probabilities, aided by Platt scaling on the
validation set, revealed only a slight overconfidence
bias at high probability outputs, further reinforcing
the potential clinical utility of the approach [10].

Comparison with Other Dental Al Systems

To contextualize our findings, Table 2 provides a
comparison between our approach and other dental
Al systems reported in the literature.

Table 2. Comparison of the Proposed Al System with Other Dental Al Approaches.

Approach Data Modalities Tasks Covered  Uncertainty Performance Metrics

(Year) Handling

This Study’s Panoramic radiograph + Dental  caries Monte Carlo Caries: ~91% sensitivity,

Model clinical data (pain) and periapical dropout (UQ) 78% specificity;

(2025) lesions Periapical: “96%
sensitivity, 65%

specificity; AUC: 0.92 and
0.85 respectively
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Gilinec et al. Panoramic radiograph only Dental  caries None Caries: 790.7%
(2023) (6] and  periapical (deterministic) sensitivity, “16%
lesions specificity; Periapical:
"97.3% sensitivity,
762.9% specificity
Pearl’s Intraoral radiographs Multiple None (black-box Reported higher
Second (bitewings/periapical) pathologies system) sensitivity than average
Opinion (caries, calculus, dentist; exact metrics not
(2022) [17] etc.) published
Overjet Intraoral radiographs Caries and None (black-box Enabled dentists to detect
Dental Al periodontal system) 43% more carious lesions;
(2023) bone loss high tooth-level accuracy

The unique aspect of our model combines visual
imaging and medical records data while
implementing UQ procedures. The extra decision-
making support provided by our approach through
uncertain case detection would yield potential
workflow and trust enhancement benefits.

Discussion

Our research shows that an Al system that processes
both clinical and radiographic data reaches
diagnostic results equivalent to those of an average
dentist and exhibits select superior diagnostic
abilities. The model demonstrates dental caries
sensitivity at 91% and periapical lesions sensitivity at
96%, which matches previous examinations of deep
learning methods in dentistry and simultaneously
enables uncertainty measurement to protect clinical
practice [3, 8, 10]. When combined with patients'
reports of tooth discomfort, the model applies dental
diagnostic procedures like dentists do, which could
enhance its suitability for real dental environments.
Our model displayed high sensitivity but its
specificity proved to be lower since it reached rates of
78% for caries diagnosis and 65% for periapical
lesions diagnosis. A lower value of model specificity
tends to yield additional false positive diagnoses that
may needlessly create follow-up medical actions or
raise unnecessary treatment costs. The UQ
framework shows value as a mitigation strategy
because it identifies when the model has low
confidence levels (nine out of ten instances of
diagnostic errors), thus enabling clinical review of
these cases. A team-based care model proves essential

reported (FDA data)

for high-volume clinical practice because it enables
fast patient assessments. The artificial intelligence
system analyzes patient cases at a rate of 2-3 seconds
per examination, surpassing the time required by
human examiners who handle 60-90 seconds per
case [11]. The beneficial characteristics of Al systems
make them suitable for rapid screening duties, which
would ease dentist responsibilities and deliver quick
responses for complex cases.

A comparative assessment of dental Al systems forms
a part of our evaluation study. Other dental Al
solutions sufficient enough with radiographic data
records have achieved high accuracy marks yet they
fail to provide uncertainty measurement features or
clinical staff involvement. The method achieves
performance benchmarks while providing additional
safety because it quantifies uncertainty. Our system
demonstrates optimal suitability to work alongside
less experienced clinicians for case review by
signaling ambiguous conditions to their attention.

A number of essential restrictions require direct
attention. A study sample size of 400 cases works well
as a pilot study yet remains insufficient for deep
learning  implementation because it reduces
generalization capability. This research analysis
depended on high-quality adult panoramic
radiographs but the performance on clinical and
pediatric radiographs alongside lower-quality images
needs further examination. The model lacks adaptive
learning capabilities that utilize clinician feedback, as
these could aid accuracy improvement throughout
time. Future modifications to this work should
enlarge the image database while adding diverse
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medical imaging sources and patient demographics
together with continuous model training systems.

Limitations

Several limitations of this study warrant discussion.
The limited number of cases (400 with 60 in the test
group) represents a common testing size restriction
for deep learning pilot projects but future research
needs to address this problem by using larger,
diverse, multi-site datasets for generalizability
confirmation [14]. The model development occurred
exclusively through panoramic radiographs but its
effectiveness on other diagnostic imaging types like
bitewing or periapical films remains untested. The
model needs further assessment for its performance
when handling images of inconsistent quality, which
can occur in practice at busy clinics. The current
application of dental pathology diagnosis software
has limited effectiveness for pediatric and senior
patient populations because their study cohort only
included adult subjects. The study findings revealed
successful Al performance but they only compared
one dentist against the Al platform, although many
dentists may exhibit diverse diagnostic competencies.
The UQ approach successfully detected ambiguous
cases but the model lacks features for displaying
explicit diagnostic bases to clinicians. The system
lacks the capability to adjust its operation based on
clinician feedback yet future developments through
active or federated learning can improve this aspect

(14, 15].

Future Work

Future research can proceed based on the
encouraging findings of this study. The model needs
to undergo external validation on bigger multi-center
datasets, which will enable it to perform well across
different clinical environments and imaging
modalities while accommodating diverse patient
populations, particularly those who are young and
elderly.  Realworld clinical testing  through
prospective trials must occur to verify how well this
Al system affects diagnostic accuracy levels along
with workflow efficiency and patient outcome results
in actual dental practice. Future updates should
develop automated workflow capabilities that allow
the Al system to both evaluate radiographs before
referring unconfirmed cases to clinical reviewers for

immediate attention. The diagnostic capabilities of
the system would improve through builtin active
learning tools able to learn from clinician feedback
with continuous feedback collection. Explaining Al
(XAI) methods wusing heatmaps would create
improved transparency and enhance dentist trust to
establish better Al-human collaboration in diagnostic
tasks [15, 16].

Conclusion

A multimodal Al system built to analyze panoramic
dental x-rays with patientreported information while
showing diagnostic uncertainty levels proved capable
of reaching general dentist diagnostic ability and
sometimes surpassing it. The detection accuracy of
dental caries and periapical lesions by the Al system
increases when it produces prediction uncertainty
measurements, which build both safety and
reliability features into automated diagnostics. Such
a system would function as a screening tool in
practice to quickly handle clear cases before offering
ambiguous cases to human evaluators, which aims to
standardize outcomes while enhancing care quality.
Wider implementation of this approach in dental
practice requires additional validation work that
includes extending the data collection and
implementing multiple imaging techniques along
with adaptive learning algorithms.
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